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Abstract

Protein design involves searching over a large
combinatorial sequence space. Evaluating
the fitness of new protein sequences often re-
quires wet-lab experiments that are costly
and time consuming. In this paper we
propose a tree-based neural bandits algo-
rithm that utilizes a modified upper confi-
dence bound algorithm for accelerating the
search for optimal designs. The algorithm
makes adaptive queries starting from single
mutations and generalizes to multiple muta-
tions, as guided by the neural bandit and a
Monte Carlo tree search process. The al-
gorithm is tested on two public protein fit-
ness datasets, Protein G B1 and YAP WW
domains. For both datasets, our algorithm
consistently identifies top fitness protein se-
quences. Notably, this approach finds a di-
verse and rich class of high fitness proteins
using substantially fewer design queries com-
pared to a range of alternative methods.

1 Introduction

Proteins are the essential building blocks of life. Due
to their versatility, proteins have been extremely valu-
able targets of scrutiny for diverse real-world applica-
tions. To this end, protein engineering aims to design
protein variants with novel or improved properties.

One approach is Bayesian optimization, which has
a long history since the seminal work by Kushner
(1964). Gaussian processes (GPs) are commonly used
for Bayesian optimization since they provide calibrated
uncertainty estimates. Several works have utilized
Gaussian processes in conjunction with Bayesian op-
timization or bandit algorithms for protein design
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(Romero et al., 2013; Frisby and Langmead, 2021; Hie
et al., 2020)

Another very powerful protein engineering strategy is
directed evolution (DE) (Arnold, 1998; Romero and
Arnold, 2009), which was originally an innovative,
purely wet-lab procedure, recognized by the 2018 No-
bel Prize in Chemistry. DE involves iterative rounds of
mutagenesis at selected or random positions of a pro-
tein (generating a library of variants), selective screen-
ing for desirable traits, and amplification of top designs
to be used as templates for the next round of muta-
genesis. Nonetheless, this is often expensive and time-
consuming. Various machine learning (ML) platforms
have been developed to assist DE to considerable suc-
cess (Yang et al., 2019; Wu et al., 2019; Romero et al.,
2013; Bedbrook et al., 2019). As the search space for
protein design scales exponentially with the size of the
protein, these methods could still be quite limiting in
that the experimental DE procedures do not consider
epistatic interactions that are outside the local search
space of these algorithms.

In this work, we present a tree-based neural bandits al-
gorithm that identifies rich and diverse classes of pro-
teins with desirable characteristics in a global search
space. In addition, our method achieves this perfor-
mance with significantly fewer protein design queries
than currently used algorithms. We utilize recent ad-
vances in unsupervised protein language models (Rao
et al., 2019; Luo et al., 2021; Rao et al., 2021) to gen-
erate embeddings for variant sequences and employ
Monte Carlo Tree Search (MCTS) to guide exploration
in the protein sequence space. We complement this
with neural bandits (Zhou et al., 2020) and compute
an upper confidence bound (UCB) based exploration
bonus with a kernel trick that substantially improves
efficiency and performance.

We test our approach on two public datasets, Pro-
tein G B1 (Olson et al., 2014) and YAP WW Domains
(Araya et al., 2012). The GB1 protein sequence has 56
residues, and the WW protein has 34 residues, where
for each residue there are 20 possible amino acids to
choose from. Our tree-based neural bandit algorithm
consistently identifies top performing proteins after
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making only 300 design queries. This query efficiency
is remarkable when compared to the massive design
space (2056 for GB1, 2034 for WW) and the large em-
bedding dimensions.

2 Related Works

Bayesian optimization (BayesOpt) is a global black-
box optimization algorithm that alternates between
two steps: (i) using the data collected so far to train a
surrogate model for the objective to be optimized, and
(ii) selecting queries based on an acquisition function,
which enables balancing exploration and exploitation
(see this overview by Frazier (2018)). Most BayesOpt
schemes use a Gaussian process (GP) surrogate, as
GP’s provide calibrated uncertainty estimates. Sev-
eral works have explored Gaussian processes (GPs) for
modeling the protein fitness landscape (Romero et al.,
2013; Frisby and Langmead, 2021; Hie et al., 2020).
Frisby and Langmead (2021) directly used regularized
BayesOpt for protein design. Unfortunately, GPs are
hard to scale to large, high-dimensional data and are
sensitive to the choice of hyperparameters.

In a similar spirit as Bayesian optimization, Liu et al.
(2019) used an ensemble of neural networks to opti-
mize the binding affinity of IgG antibodies. They per-
formed gradient-based optimization on a continuous
relaxation of the discrete search space, which is vul-
nerable to poor generalization.

In general, acquisition function optimization is a non-
trivial combinatorial optimization problem. Indeed,
Hie and Yang (2021) noted that BayesOpt may not
be amenable for protein design, as obtaining well-
calibrated uncertainty estimates can be difficult or re-
quire many queries when the inputs are discrete and/or
high-dimensional.

While directed evolution (DE) has had major success
in protein engineering, it is a wet-lab procedure that
requires extensive, costly experiments. In addition,
DE is sample inefficient and relies on greedy hillclimb-
ing, which often results in getting stuck at local op-
tima. To make DE more sample efficient, several works
have investigated utilizing machine learning (ML) to
find better sequences more quickly. ML-assisted DE
uses the sequence and screening data at each round
to update an ML model that predicts the effects of
mutations on the property being optimized. The next
round is then seeded with the most optimal sequences
found by the model. In contrast to classical DE,
ML-assisted directed evolution can escape from local
optima by learning/generalizing the entire functional
landscape from data. Wu et al. (2019) developed a
general, straightforward machine learning-assisted di-
rected evolution pipeline. However, these approaches

still require an extensive amount of wet-lab experi-
mentation. Furthermore, these methods typically re-
strict themselves to small subsets of residues for opti-
mization, which drastically reduces the combinatorial
search space at the cost of missing many potentially
significant epistatic interactions.

The most closely related work to ours was developed
by Romero et al. (2013). They modeled the protein fit-
ness landscape using a GP and employed a batch selec-
tion upper confidence bound (UCB) algorithm (Desau-
tels et al., 2012) for sequential GP optimization. This
approach is equivalent to employing stochastic linear
bandits with the respective kernel feature space. Our
approach differs from this work and the others listed
above in several notable ways. First, in order to se-
quentially search and optimize in a large global search
space, we utilize a neural multi-armed bandit approach
(Zhou et al., 2020). This leverages a much more pow-
erful function approximator in a neural network (NN),
which induces a different kernel. Second, we lever-
age the neural tangent kernel theory and employ a
kernel trick to rigorously calculate a UCB-based ex-
ploration bonus to achieve provable learning efficiency
using the NN. Third, we incorporate Monte Carlo Tree
Search (Coulom, 2006) for more efficient exploration
of the protein sequence space. Furthermore, we utilize
TAPE (Rao et al., 2019) to generate expressive, low-
dimensional embeddings for variant sequences. The
combination of neural bandits, tree search, and pro-
tein embeddings from language models significantly
improves generalizability of our model and accelerates
the search for high-value proteins.

3 Problem Formulation

Suppose that we want to optimize a protein, whose
design can be encoded by an amino-acid sequence x ∈
X of length L. As most proteins are characterized by
20 different amino-acids, |X | = 20L. A typical value
of L can range from 20 to several hundreds.

We are interested in the utility of a protein, which
is an unknown function f(x). If we experimentally
synthesize a protein with design x, we would obtain a
noisy estimate of its utility y such that E[y] = f(x)
(we refer to this as a query). Our goal is to find a
design with the highest utility:

max
x

f(x).

This is a combinatorial optimization problem. If we
have no structural knowledge at all, we would have to
exhaustively search the entire space X , and the worst-
case query complexity would be |X | = 20L. In this
project, we aim to exploit known structures to design a
fast online learning algorithm. Our goal is to improve
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Figure 1: Model Architecture. We first initialize the tree structure and pretrain the NN with a small subset
of single mutation variants. Then, for T iterations, we (1) select the top N nodes in the tree by MCTS, (2)
compute a kernelized neural UCB score, (3) expand the node corresponding to the best query and backpropagate
in the tree, and (4) retrain the NN with updated training data.

the utility via multiple rounds of experiments (each
experiment makes a number of queries), and we hope
to find the optimal design x∗ = argmaxx f(x) as fast
as possible.

4 Approach

The proposed tree-based neural bandits algorithm is
composed of three key components. First, we utilize
protein embedding to represent the information under-
lying the protein sequences, and formulate the high-
value protein design problem into multi-armed ban-
dits. Secondly, we apply neural bandits with a novel
kernel trick in Upper Confidence Bound calculation.
Thirdly, we incorporate Monte Carlo Tree Search into
our model to guide exploration in the combinatorial
sequence space. The model architecture is illustrated
in Figure 1. The full pseudocode for the algorithm is
provided in Algorithm 1. Detailed information about
the three components are elaborated as follows.

4.1 Protein Embedding and Multi-armed
Bandits

Protein modelling acts as the first step for in silico
protein related research. Various protein embedding
methods have been put forward, including TAPE (Rao
et al., 2019), ECNet (Luo et al., 2021), MSA Trans-
former (Rao et al., 2021), etc. We utilize TAPE as
the representation of any given amino acid sequences,
which is pre-trained with self-supervised learning to
extract information from unlabelled sequences.

In contrast to the previous works of Wu et al. (2019)
which is under a directed protein evolution framework
and Frisby and Langmead (2021) which handled the
problem with a regularized Bayesian optimization ap-
proach, we formulate the protein design problem into
multi-armed bandits in order to find a rich class of
high-value proteins with limited experimental queries.
To be specific, we utilize the contextual bandits and

take the sequences after mutations as the arms with
the protein embedding as the context. With regard to
the exploration exploitation trade-off, the UCB con-
sisting of both the payoff estimation term and the
bonus term is calculated as the query criterion. Com-
pared with directed evolution methods, which rely on
greedy optimization, multi-armed bandits can explore
the variant sequence space more efficiently.

4.2 Neural Bandits and Kernel Tricks

As illustrated in Section 5, multi-layer perceptrons
with TAPE embedding inputs work well in the su-
pervised task to predict fitness value of a given se-
quence. This supports the use of neural contextual
bandits proposed by Zhou et al. (2020) in our protein
design problem. In neural contextual bandits, an MLP
model f(x;θ) is retrained with the new queries, and
the sequences to be queried are selected based on the
neural-UCB, Ut,a, of arm a in the t-th round of query:

Ut,a = f(xt,a;θt−1)

+ γ
√

g(xt,a;θt−1)⊤Z
−1
t−1g(xt,a;θt−1)/m (1)

where

Zt = Zt−1 + g(xt,at
;θt−1)g(xt,at

;θt−1)
⊤/m

at denotes the arm with largest Ut,a, m denotes the
hidden dimension of the 3-layer MLP, γ is the trade-
off parameter, and g(x;θ) = ∇θf(x;θ) is the gradient
of the neural network.

Note that the gradient vector g(x;θ) ∈ Rp, where
p = m + m2 + md (d denotes the dimension of pro-
tein embedding x), can be quite large given a large
protein embedding dimension. Thus, Zt ∈ Rp×p tends
to be a large matrix that is intractable to compute and
store in memory. In the experimental implementation
of Zhou et al. (2020), the authors used the diagonal
elements to approximate the matrix to lower the com-
putational and memory cost in the matrix product.
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Algorithm 1 Tree-based Neural Contextual Bandits

1: Input: Number of rounds T , neural bandit exploration parameter γ, MCTS exploration parameter C,
number of pretraining data npre, number of top sequences selected from MCTS N .

2: Network Construction: Define the neural network model f(x;θ) as a 3-layer MLP model with hidden
dimension size m, and is trained by an Adam optimizer with learning rate η, regularization parameter λ,
batch size b and epoch number J .

3: Tree Construction: Construct tree structure T with the wild type as root node, and the single mutation
variant of a given node as its children.

4: Initialization: Initialize θ0 by training the MLP with randomly sampled npre single mutants embedding
X0 and log fitness R0. Initialize number of visit and value of T by visiting each node in X0 once.

5: Initialize K0 = λI+ g(X0;θ0)g(X0;θ0)
⊤

6: for t = 1, . . . , T do
7: Select top N nodes {xt,a}Na=1 from T based on U inte

t,a calculated by (3)
8: for a = 1, . . . , N do

9: Compute Ut,a = f(xt,a; θt−1) + γ
√
(g⊤t,agt,a − kt,a

⊤K−1
t−1kt,a)/λ

10: where kt = (g1, g2, . . . , gn)
⊤, kt,a = kt · g(xt,a; θt−1)

11: Let at = argmaxa∈[N ] Ut,a

12: end for
13: Query sequence at and observe log fitness value rt,at

14: Conduct node expansion and back propagation with rt,at
in tree T

15: Re-train the MLP with the updated training data Xt = [Xt−1,xt,at
], Rt = [Rt−1, rt,at

] to get θt
16: Compute Kt = λI+ g(Xt;θt)g(Xt;θt)

⊤

17: end for

However, ignoring all non-diagonal elements leads to
severe information loss and poor bonus term calcula-
tion. We incorporate kernel tricks into the UCB calcu-
lation to solve this problem. To be specific, the gradi-
ent vector g(x;θ) is replaced by its kernel representa-
tion k ∈ Rn and Zt is replaced by a regularized gram
matrix Kt ∈ Rn×n, where n is the number of data
points in model training. Let gi for i = 1, 2, . . . , n de-
note the gradient vector of the i-th training input, and
define gt,a := g(xt,a; θt−1). Then the kernelized neural
UCB can be formulated as follows:

Ut,a = f(xt,a; θt−1) + γ
√
(g⊤t,agt,a − kt,a

⊤K−1
t−1kt,a)/λ

(2)

where Kt is updated as ktkt
⊤ + λI, kt =

(g1, g2, . . . , gn)
⊤, and kt,a = kt · gt,a. We will show

in Section 5 that the proposed kernel tricks lead to
more informative exploration and better performance
compared to the diagonal approximation.

4.3 Incorporate MCTS with Neural Bandits

In each round of query in the neural bandits, the op-
timal sequence is selected and queried based on the
neural UCB. However, it is not only time consuming
to calculate UCB for every sequence in the dataset,
but also unrealistic in real-life applications where the
set of all the possible mutations is exponentially large.
One straight-forward method to deal with this problem

is to randomly sample a certain number of sequences
from the sequence pool, which is sub-optimal and leads
to large variance.

A more principled sampling strategy can be achieved
by incorporating Monte Carlo Tree Search (Coulom
(2006)), which leads to the tree-based neural bandits
algorithm. Instead of random sampling, we make use
of MCTS to first sample a small number of sequences
with top scores, and further select the one with the
highest neural UCB. To construct the tree stucture, we
take the wild type as the root, and define the children
of each node as all of its single mutation variants. This
structure is motivated by the fact that we wish to avoid
changing the protein too much (otherwise, we are most
likely to reduce fitness), which translates to a shallow
search in the tree. In contrast to the selection and
play-out step in standard MCTS, we select the top N
nodes (where N is the number of sampled sequences)
instead of just the best node, and get the fitness value
of the terminal node directly as the evaluation result
V to replace the play-out process.

In order to combine information from both the MCTS
and neural bandits, we integrate the two upper confi-
dence bounds by utilizing the tighter bound of the two
for the selection of top N nodes:

U inte
t,a = min{Uneuro

t,a , UMCTS
t,a } (3)

where Uneuro
t,a is derived based on Eq. 2 and UMCTS

t,a =

Vt,a + C
√
logN(parent(a))/N(a) is the standard
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MCTS upper confidence bound, where N(·) denotes
the number of visits for a node, C is the exploration-
exploitation trade-off parameter for MCTS, and Vt,a

is the average value of node a in round t.

In order to accommodate different types of nodes, e.g.
terminal nodes, in the tree structure, we define a case-
by-case U inte

t,a in our experiments which makes slight
modifications to Eq. 3. Detailed methods are included
in Appendix A.

5 Experiments

We test the performance of our algorithm on two
benchmark protein datasets, Protein G B1 (Olson
et al. (2014)) and YAP WW domains (Araya et al.
(2012)). We will analyze the properties of the pro-
tein fitness data and discuss the effects of each model
component in this section.

5.1 Data Description

5.1.1 Protein G B1

Protein G is an antibody-binding protein expressed
in groups C and G Streptococcus bacteria. The B1
domain of protein G (GB1 domain), which has 56
residues in the sequence, interacts with the Fc domain
of immunoglobulins. Olson et al. (2014) created a li-
brary which encodes all single and double mutants in
the GB1 protein and profiled the relative binding effi-
ciency to IgG-Fc for each variant. By measuring the
number of each variant contained in the input library,
nin, and the output “selected” library, nsel, the fitness
Wmut of a variant is calculated as follows:

Wmut =
nsel
mut/n

sel
wt

nin
mut/n

in
wt

(4)

where the subscript wt represents the numbers of wild
type in the libraries and subscript mut denotes those
of the mutant. Thus, Wmut = 1 indicates a variant
with the same fitness as the wild type.

Unlike Frisby and Langmead (2021) and Wu et al.
(2019), which used the dataset of the 149,361 out of
160,000 (i.e. 204) possible variants of four sites in
protein G B1 by Wu et al. (2016), we focus on the
dataset with the fitness landscape of almost all sin-
gle and double mutation variants of all the 56 sites.
It contains fitness measurements for all 1,045 single
mutants and 509,693 double mutants (95.1% of all(
56
2

)
× 192 = 555, 940) with low experimental error.

5.1.2 WW Domain

The hYAP65 WW domain is a modular domain with
34 residues which mediates a variety of protein-protein

Table 1: Statistical data of fitness for each level of
mutation in the two datasets

dataset
mutation
level

variants
number

maximal
fitness

99%
percentile

GB1 Protein
single 1045 5.02 2.68
double 509,693 14.46 3.15

WW Domain

single 478 7.86 4.66
double 17,389 38.07 4.60
triple 6,115 37.51 8.34
4+ 681 20.26 6.42

interactions. Araya et al. (2012) used deep muta-
tional scanning to measure the ability of 47,000 unique
variants of the WW domain protein to bind to their
polyproline peptide ligand, and the corresponding fit-
ness value relative to the wild type is calculated the
same as Eq. 4.

Among the 47,000 variants, 24,665 variants with low
experimental standard error were identified. Among
these, 478 contain a single mutation, 17,389 contain
two mutations, 6,115 contain three mutations, and 681
contain more than 3 mutations.

The kernel density estimation for log fitness values of
different levels of mutants are shown in Figure 2. The
histograms are normalized by the number of variants.
Most of the variants are inferior to the wild type with
log fitness smaller than 0. The 95th and 99th per-
centiles of the log fitness values are marked in the fig-
ure. Compared with GB1 protein, although the obser-
vations of double mutants are more sparse in the WW
domain dataset, it contains higher order mutants with
more complex fitness landscapes, which act as a good
supplement to the GB1 dataset. Table 1 highlights
some statistics of both datasets. Both the maximal
fitness value and 99th percentile of high order mutants
are much larger than those of single mutants, which
indicates the importance of efficient optimization in
this high-dimensional combinatorial space.

Figure 2: Histograms and kernel density estimations
of log fitness values of different level of mutants in the
two datasets.
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5.2 Supervised Learning with TAPE
embedding

Before digging into protein sequence design, it is help-
ful to analyze the relationship between TAPE embed-
ding and the fitness value for each level mutants, and
check the performance of the supervised learning task
to make accurate prediction on the fitness value with
TAPE embedding, as the ability to accurately map se-
quence embeddings to fitness is one of the foundations
of the neural contextual bandits algorithm.

Figure 3: UMAP projection of TAPE embed-
ding of each level of mutations in GB1 and WW
domain datasets. For ease of visualization, random
subsets of double and triple mutants are selected, so
that the subsets have the same size as the set of single
mutants. Color indicates the level of mutation.

To better visualize the high dimensional embedding,
we utilize UMAP (McInnes et al., 2018) to project
the embeddings into a two-dimension space and gen-
erate a scatter plot, as shown in Figure 3 and Figure
4. Proteins are marked with colors representing their
levels of mutation in Figure 3. Both datasets consist
of a dense center made up of all orders of mutations
surrounded by smaller clusters that are composed of
higher-order mutants. Meanwhile, points in the pe-
ripheral clusters are more likely to have extreme fitness
values, while points in the center cluster tend to have
a close-to-average fitness. This indicates that some
of the high-order mutants are far away from the wild
type and other mutants in the embedding space, and
thus potentially possess different properties in terms
of binding affinity.

Furthermore, we define the supervised learning task for
each dataset with a 3-layer MLP model with the Swish
activation function (Ramachandran et al., 2017) and
a fixed number of single mutants training data points
(600 for GB1 protein and 300 for WWDomain). Then,
we change the proportion of double mutants in the
whole training data and test the model performance
on test data for different levels of mutations. Table 2
shows the R2 values for prediction.

Figure 4: The same UMAP projection as in Figure 3.
The color indicates the log fitness value normalized by
minimum and maximum.

Table 2: Supervised learning R2 for each proportion
of double mutants in MLP training data of the GB1
and WW domain dataset.

GB1 Protein train validation test - single test - double

0% 0.991±0.003 0.785±0.022 0.749±0.014 0.634±0.026

50% 0.993±0.002 0.789±0.026 0.746±0.043 0.648±0.026

100% 0.993±0.002 0.724±0.015 0.724±0.015 0.640±0.022

WW Domain test - single test - double test - triple test - 4+

0% 0.455±0.034 0.501±0.005 0.250±0.006 0.110±0.009

50% 0.470±0.050 0.494±0.025 0.255±0.022 0.144±0.024

100% 0.386±0.062 0.491±0.018 0.274±0.013 0.159±0.025

In both datasets, the model can predict well for sin-
gle and double mutants. Furthermore, the model is
able to generalize well to double mutants when trained
with just single mutation data. However, performance
drops significantly for higher order mutants, which
likely have more epistatic interactions and larger dis-
tribution shift.
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Figure 5: Models trained by supervised learning
tends to predict high-value proteins more ac-
curately than low-value ones. The figure plots the
true log fitness value against MLP predicted value for
double mutants in GB1 data when using 100% single
mutants training data. The overall R2 for double mu-
tants test data is 0.634 and the y = x line is plotted
in red color.

By plotting the true value versus the MLP prediction
value for double mutants in GB1 dataset in Figure
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Figure 6: Model performance with regard to the two metrics for each backward rolling 100 se-
quences. Five models including the tree-based neural bandits are tested on two benchmark datasets, and
evaluated based on two types of metrics calculated on a rolling window basis, the average log fitness and the
global search space ranking, as described in Section 5.3.

5, we see that the model predicts high fitness vari-
ants with higher accuracy than for low fitness vari-
ants. This is typical for such datasets as higher fitness
variants are usually more stable and have lower ex-
perimental error. This phenomena is amenable to the
bandit setting, as we are more interested in the high
fitness regions of the fitness landscape than the low
fitness regions.

5.3 Results

To verify the efficiency of our model and the effect
of each key components in our model, we compare the
query efficiency of the tree-based neural bandits model
with four other models on the two benchmark datasets,
GB1 Protein and WW Domain:

1. Linear Bandits: Linear bandits utilize regular-
ized linear regression with TAPE embedding in-
puts and make queries based on linear UCB.

2. GP-UCB: We run the batch GP-UCB algorithm
(Desautels et al., 2012) with an RBF kernel.

3. Neural Bandits with Diagonal Bonus: Use
neural UCB to decide which sequence to query.
For the intractable bonus calculation due to the
high dimensional gradient vector, as Zhou et al.
(2020) did in their experiments, only use the diag-
onal elements to approximate the Gram matrix.

4. Neural Bandits with Kernel Bonus: Instead
of a diagonal representation which would lose
much information, utilize the kernel tricks for
dimension reduction when calculating the bonus
term.

We have also tried Bayesian optimization, but these re-
sults are omitted as Bayesian optimization performed
very poorly compared to the other listed methods.
This is most likely due to the high-dimensionality of
the TAPE embeddings. To measure model perfor-
mance, we utilize two metrics on a rolling window ba-
sis. For each time of a model’s query, the metrics are
computed for the 100 most recent queries. We define
the two metrics:

1. Global search space ranking: the percentage
of sequences in the 100 variants that are within
the top 1% / 5% of the global fitness space (as
a reference, log fitness 99th percentile is 1.17 for
GB1 and 1.75 for WW).

2. Average log fitness: The previous metric fo-
cuses on the ranking perspective, while the aver-
age log fitness is more straightforward.

For each model, we use an initialization set of 200 ran-
dom single mutants and train the MLP model with
the same hidden dimension size. We perform a grid
search to optimize the model regularization parameter
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Figure 7: Sampling distribution shifts as the tree-search bandit algorithm learns to identify top-
value proteins. (a) Fitness distribution shift during rounds of model queries of GB1 dataset; (b) Contour plot
on UMAP projection of embedding for the initialization data and every 100 rounds of queries. The contours in
blue correspond to queries made by the tree-based neural bandits model, and the red contour in the initialization
figure is the distribution of queries made by Wittmann et al. (2021) to train their ML-assisted DE model. More
details in section 5.3.

λ and the exploration-exploitation trade-off parame-
ters γ and C. To mitigate the cost to retrain the NN,
we retrain every 20 new queries. The detailed experi-
mental settings are described in Appendix B.

The overall results are illustrated in Figure 6. We see
that each of the components of our tree-based neural
bandits model, including neural bandits, kernel tricks,
and MCTS, play an active role to increase search and
query efficiency. It is worth noting that for the GB1
dataset, our model is able to achieve more than 80%
of the top 1% queries in terms of global space ranking,
when pre-trained on 200 single mutation variants and
trained with less than 200 additional queries. Further-
more, with these queries, it achieves a rolling average
log fitness of over 1.25, which is about 3.5 times of
the wild type fitness. This indicates that our model
can efficiently identify a rich and diverse class of high
fitness sequences.

From Figure 6, we see that our model achieves a much
higher average fitness level throughout all query iter-
ations. This indicates how MCTS would guide explo-
ration in neural bandits: at initialization, it guides
the bandit algorithm to search for high predicted fit-
ness branches of the tree by the integrated UCB. For
branches with very few queries, Uneuro will give a
tighter bound with the assistance of neural network
models; for branches that have been explored to a large
extent, UMCTS works by gathering information from
previous queries.

To analyze the search trajectory, we plot the fitness
distribution shift and the queried sequences UMAP
projection shift of the initialized state and every 100
rounds of queries of the tree-based neural bandits on
the GB1 dataset in Figure 7. Figure 7(a) demonstrates
that the queried sequences concentrate on high fitness

variants with increased number of queries. Figure 7(b)
highlights the way that exploration and exploitation
are conducted. From initialization to 100 queries, the
model does sufficient exploration in the global space
and finds several local optima. In further steps, the
queries concentrate in a small area of UMAP projec-
tion space that corresponds with high fitness variants.
We plot the distribution of the sequences selected by
Wittmann et al. (2021) in red in the initialization sub-
plot. Their research focuses on the four-site mutants
dataset by Wu et al. (2016) and 384 sequences are se-
lected as the training data for the MLDE model. We
observe that these variants do not cover high fitness
variants in global variant sequence space.

6 Conclusions

We propose a tree-based neural bandits algorithm for
efficient combinatorial optimization in a large search
space, and utilize it for protein design. We demon-
strate that our algorithm finds rich and diverse protein
sequences with favorable qualities in fewer queries than
other models. Our algorithm is also quite flexible as
we can replace the TAPE embeddings with more ex-
pressive embeddings like MSA based embeddings (Rao
et al., 2021), which might allow implicit consideration
of high-order epistasis.
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Tree-Based Neural Bandits for High-Value Protein Design

A Approach: Details on the Integrated UCB Calculation

As stated in Section 4.3, we select top N nodes from the tree structure according to the integrated UCB in Eq.
3. Based on the characteristics of the protein mutation tree, we conduct several modifications to handle the
different types of nodes in MCTS as follows:

A.1 Avoid getting stuck in local optima.

To make sure that our model does sufficient exploration of the global search space in the tree structure and does
not get stuck in local optima, we add an additional term add to the original UCB value for the non-terminal
nodes set N1 containing nodes which have not been visited or have been visited only once (i.e. its children nodes
have not been visited):

U inte
nt∈N1

= min{Uneuro
nt

, UMCTS
nt

}+ add (5)

Note that the original bound is the tighter one between MCTS bound and neural UCB, thus it is hard to reach
a good balance between exploration and exploitation by merely increase the tradeoff parameters γ and C of the
two bounds. Other methods like ε-greedy fail to work well due to the property that high fitness sequences are
highly concentrated in several single mutation branches of the tree.

Besides, we impose constraints on visiting frequency of both terminal and non-terminal nodes. Each non-terminal
nodes can not be visited more than p in proportion to total query number, and each terminal node can only be
visited less than v times.

A.2 Deal with epistasis phenomenon.

Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or
absence of mutations in other genes or other positions. This may lead to high fitness double mutants whose
parent single mutant nodes have low fitness value. To handle this problem, we use the MCTS bound itself instead
of the integrated bound for the non-terminal nodes set N2 containing nodes with visited children nodes:

U inte
nt∈N2

= UMCTS
nt

(6)

With this, the selection criterion depends on the average value of visited nodes in this branch without being
bounded by the potentially low value of this node.

A.3 Terminal node bonus discount.

In the protein design scenario, the depth of tree structure is much smaller than other MCTS application scenarios.
Since we hope to achieve a rich and diverse class of high fitness mutants, the bonus discount d is included for
the nodes set N3 containing terminal nodes that have been visited (and thus have precise fitness value):

U inte
nt∈N3

= min{Uneuro
nt

, UMCTS
nt

} (7)

where

UMCTS
nt

= Vnt +
C

d

√
logN(parent(nt))/N(nt) (8)

With hyper-parameter d > 1, the bonus terms of visited terminal nodes are discounted, which lower the algo-
rithm’s preference for the nodes that we have already gathered full information and thus do not gain better
knowledge by querying it again.

B Experiments

B.1 Data Collection and Preprocessing

We utilized two public protein fitness datasets in our experiments, the GB1 protein and the WW Domain. The
GB1 dataset is available in the supplementary file of Olson et al. (2014). We calculate the fitness value for
each mutants based on the number of the input library and the output selected library given in this file.

https://www.sciencedirect.com/science/article/pii/S0960982214012688?via%3Dihub
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The WW Domain dataset is available in the MaveDB database (Esposito et al., 2019). We utilize the amino
acid variant scores file which contains 30487 unique protein sequences. Furthermore, we drop the sequences with
mutations to the initiator codon or the terminator codon, and drop the low confidence sequences with fitness
standard error greater than 0.25.

For both datasets, we input the protein sequences and get their TAPE embedding via the tape library.

B.2 Experimental Settings

We evaluate the performance of the tree-based neural bandits model and the other four models as stated in
Section 5.3 of the paper on the two datasets described above. We implemented our model with the Pytorch
architecture on a computer with an Intel Core i5 CPU and a 8 GB RAM.

In our experiments, the dimension of TAPE embedding is 768, and we set the number of rounds T as 500,
number of sampled sequences from MCTS (for the tree-based neural bandits) or random sampling (for other
four models) N as 1000, number of pretraining data npre as 200, neural network hidden dimension m as 128,
MLP batch size b as 20, and epoch number J as 50. Besides, for the GB1 dataset, we set the additional term
add in Section A.1 to be 2, the visiting frequency constraint p to be 0.3, v to be 3, and the bonus discount d to
be 10. For the WW Domain dataset, we set add to be 1, p to be 0.1, v to be 10, and d to be 10. We use grid
search to tune the MCTS tradeoff parameter C over {0.5, 1, 1.5}, neural bandits exploration parameter γ over
{10−3, 10−2, 10−1}, the regularization parameter λ over {10−4, 10−3, 10−2} and the MLP learning rate η over
{10−4, 5× 10−4, 10−3}. We select C = 1, γ = 0.01, λ = 10−3, η = 5× 10−4 for both datasets.

For the other four benchmark models, we conduct similar grid search for hyper-parameters. For linear ban-
dits, we select the exploration parameter γ as 0.1 over {0.01, 0.1, 0.5} and the regularization parameter λ as
0.1 from {0.01, 0.1, 1, 3} for both datasets. For neural bandits with diagonal bonus, we select γ as 0.01 over
{10−3, 10−2, 10−1}, and λ as 0.01 for GB1 and 10−3 for WW over {10−3, 10−2}. For neural bandits with kernel
bonus, we select γ as 0.01 over {10−3, 10−2} and λ as 10−3 over {10−3, 10−2} for both datasets. For GP-UCB,
we select γ as 0.01, λ as 10−4, and the RBF kernel parameter ω as 10−3 over {10−3, 10−2}.

https://www.mavedb.org/experiment/urn:mavedb:00000002-a/
https://github.com/songlab-cal/tape

